

Designing for Children
- With focus on ‘Play + Learn’

Visual Programming Application for Children to program
Robotic Toys

Nikhil Karwall, Design Consultant, Mumbai, India, nikhil_karwall@yahoo.co.in

Abstract: Robotics toys offer a unique play-based medium for kids to understand different

scientific concepts and use their creativity to come with intelligent and fun solutions. Certain

Programmable Robotic Kits allow children to give a desired physical structure to the robot and

further program it to carry out specific intelligent tasks, fuelling their imagination on multiple

levels. The paper discusses the thought process and rationale behind the design of a software-based

medium for children to program assembled robots created out of such kits.

The application was targeted to be intuitive and simple for children to program their robots for

different kinds of tasks, and again be scalable enough to take care of complicated programming

scenarios, while adhering to the technical code-generating backend at all times. Taking special

consideration over the dependency on the physical structure of the robot, a unique application was

developed that allowed the child to create intuitive and lucid ‘visual algorithms’ with an interface

that mandated no prior knowledge of programming.

Unlike design of conventional software applications meant for certain fixed/pre-decided goals, the

open-ended tasks of the software necessitated a different kind of ideation process. Testing of the

application with children from various programming backgrounds and working alongside the

development team while considering the constraints of the used technology also formed as key

stages of the design process.

Key words: Visual Programming, Programmable Robotic Kits, Robotic Toys, Programming,
Interface, Algorithms.

1. Introduction

Programmable Robotic Kits are robotic toys that possess certain special capabilities such as

mobility, motion transfer, hearing (sensing sound), vision (sensing obstacles),

computational abilities etc., owing to components such as sensors, processing unit/s,

motors and buzzers. The child can further program these kits so as to utilize these

capabilities in different ways under different conditions e.g. a child could program a

programmable robotic kit in the form of a Car to ‘stop’ or ‘take a left turn’ every time

there is an obstruction in front of it. Thus, such robotic toys help the child understand and

absorb the fundamentals of science and electronics while at play and aid in developing his

confidence and general interest towards an intellectual stream such as robotics at a very

early stage.

Robots prepared using programmable robotic kits can be instructed to carry out definite

actions under different conditions by feeding relevant programs into them. The child

needs to write a program on his computer and feed it into the robot. Generally,

conventional programming languages such as C are used for the purpose. Being complex

and abstract, the learning curve associated with such conventional languages is quite

steep, especially for young kids. A Visual Programming Application or Language (VPL) offers

a simpler medium of programming. It provides a graphical interface to the user, allowing

spatial and visual manipulation of visual elements for creation of programs, instead of

writing them textually (Visual Programming Language, Online). In other words, VPLs open

up the world of robotics and programming to young children, allowing them to explore the

medium and develop interest at an early age.

This paper shall discuss the design process for the visual programming language named

Cimple, conceptualized for the programmable robotic kit iPitara.

2. Programmable Robotic Kits

2.1 General Characteristics

Programmable robotic kits consist of components of two kind, electronic components like

motors, processing unit/s, sensors, and buzzers etc., and mechanical components such as

wheels, gears, pulleys, connecting linkages and other physical elements. With the

processing unit acting as the central intelligence console, certain electronic components

act as ‘input elements’ i.e. provide feedback to the processing unit based on the ambient

conditions e.g. sensors, while certain components act as ‘output elements’ i.e. their

actuation is controlled by the processing unit e.g. motors. Thus, by feeding user-defined

programs, the capabilities of the processing unit can be used to carry out tasks

‘intelligently’. In other words, under different conditions i.e. based on the feedback of

input components, the output components can be prompted to carry out pre-determined

tasks, such as lifting an object on detection, changing direction of motion on detection of

an obstacle etc.

Certain programmable robotic kits have a pre-defined structure, wherein the position and

orientation of different components is fixed; while certain kits allow the child to create a

robot with a particular shape/structure of choice using certain building-block elements.

Shown in Figure 1 is the programmable robotic kit Mavin (ER-6 Programmable Robot Kit,

Online), having a fixed structure.

Figure 1. Programmable robotic kit having a fixed structure, Mavin.

2.2 Programmable Robotic Kit iPitara

iPitara is a modular programmable robotic kit offered by Thinklabs. Its key electronic

components consist of a processing unit, called ‘the brick’, inclusive of an LCD display

screen and a buzzer; sensors such as touch, obstacle, sound and ultra-sonic sensors; and

DC and Servo motors. Key mechanical components consist of wheels, gears and pulleys of

different sizes, and a castor. The kit provides Meccano (Meccano, Online) elements as

building blocks, for creating the structure of the robot. The various electronic and

mechanical elements are mounted over these meccano elements. Using specific cables,

the different electronic components are connected to the ports available on the brick so

as to complete the electronic circuit.

In accordance with the task at hand, the child creates a robot with a suitable structure

using the mechanical and electronic components of the iPitara kit. The robot is then fed a

program so as to make it act in accordance with the specific task. Shown in figure 2 is the

iPitara robotic kit in disassembled state.

Figure 2. Programmable robotic kit iPitara.

2. Programming for Robotic Toys

Programming for robotics generally consists of defining the input-output relationships for

various components under different conditions and supplying the necessary information for

the tasks to be carried out successfully (Robot Software). Primarily, it consists of preparing

an algorithm, in a particular language, with reference to a specific task at hand. For

certain complex scenarios, at times it might also necessitate the creation of variables such

as integers, arrays and counters, and execution of certain calculations with these variables

in reference as part of the program. Shown in figure 3 is a snippet of a robot program

written in Nibble, a programming language that derives its features primarily out of C

language. The code primarily instructs two motors of a robot to regulate their motion

based on the conditions sensed by its two sensors.

Figure 3. Code written in Nibble language.

3. Visual Programming Language

A Visual Programming Language is an intuitive and simple means for users to create

programs. Rather than typing programs textually under the constraints of certain syntax

format, as is necessary in case of conventional programming languages; the visual

programming language allows the user to recreate the inherent logic structure using

graphical elements. Being designed for easy usage and manipulation, these graphical

elements make the task of writing programs quite simple and straightforward. The ‘visual

algorithms’ created using visual programming languages are intuitive to comprehend and

create, and have no specific syntax requirements such as those associated with

conventional programming languages, making them far easier for younger kids to pick up.

Shown in Figure 4 is the interface for the Microsoft Visual Programming Language (VPL

Introduction, Online).

Figure 4. A program written in Microsoft Visual Programming Language.

4. Initial Study

4.1 Understanding Conventional Programming

The basic need of creating a Visual Programming Language arises out of the issues

associated with conventional programming languages used for creating programs for

robots. Being quite abstract, with specific syntax requirements and technical referencing

analogies, mastering languages such as C is a complex and time-consuming task, especially

for the young minds of children. With a need to come up with an alternate solution for

children to program, a very crucial part of the project consisted of initially grasping the

underlying logic and complexity of programs created using such conventional programming

languages, so as to ensure that the designed VPL would do justice to the basic concept of

algorithms and takes care of the associated complex scenarios even while being used by

kids.

4.2 User Study

The initial study phase also included observing children at workshops while attempting to

create logical algorithms in response to given problems. This was primarily to observe and

understand the natural methodology adopted by them while trying to come up with

solutions.

4.3 Competitor Visual Programming Languages

The different Visual Programming Languages being offered in the market were studied so

as to understand their perspective towards the particular product and also to realize the

improvements which could be offered as part of the new VPL with respect to the existing

ones. Shown in figure 5 are the snippets of interfaces belonging to different VPLs.

Figure 5. (Clockwise, from Top Left) Interfaces for few VPLs: Scratch, Evobi, Yahoo Pipes,

Lego Mindstorms NXT and Microsoft Visual Programming Language.

Most of these applications, especially Evobi (Bi-box, Online), Yahoo Pipes (Yahoo Pipes,

Online) and Microsoft Visual Programming Language (VPL Introduction, Online), allow for a

format of programming that is closer to the way algorithmic flowcharts are conceived and

written. Few of them being languages developed for certain programmable robotic kits

having a fixed structure, the advantage of having a standard structure has been made use

of by utilizing references to it while programming. Some, like Scratch (Scratch, Online),

use visual elements that resemble physical objects which improve their intuitive usage.

The software for Lego Mindstroms NXT (NXT Software, Online), a product that is closest to

iPitara in terms of fundamental concept and usage, has an extremely refined interface in

terms of usability and visual design, though is still abstract enough to warrant certain

amount of learning time and effort.

5. Final Brief

A broad brief for the design of Visual Programming Language was prepared after realizing

the key commercial and user-specific needs of the user group primarily gained from the

initial study phase. Mentioned below are the key points of the brief:

a. The language needs to be specifically developed for young kids, from 4th to 8th std.

in school, who currently either find it very tough or are practically unable to carry

out programming using conventional languages.

b. The primary aim is to enable easy and intuitive creation of programs to instruct the

assembled robots, without any prior knowledge of any programming platform.

c. The VPL need not provide all the functionalities offered by conventional

programming applications, focusing on creating ‘simpler’ programs only, not

beyond a certain level of complexity.

d. The language needs to work in a manner so as to enable a machine-code to be

generated at the back-end.

e. The VPL needs be designed in a manner so as to empathize with the fact that the

kids eventually need to move to a conventional programming platform after a

certain point of time. Thus, it needs to provide a means for the kids to be in touch

and gradually develop comfort with a conventional programming language, in this

case being Nibble.

f. The development platform to be used for creating the application is QT.

6. Ideation

A number of concepts were prepared for the VPL with reference to thought processes in

different directions, absorbing the underlying complexities and relationships in the

process. The concepts are explained in brief further below.

Though prior to the revelation of concepts, a sample program written in Nibble has been

shown in Figure 6 as a reference to the format of programming for the iPitara kit. Nibble

was used as the reference conventional programming medium while conceptualizing the

VPL. The program shown below is for an ‘obstacle avoiding’ robot (prepared using the

iPitara kit) having two touch sensors (for detection of obstacles) and two motors (for

providing motion through wheels). The structure of the robot has been shown alongside as

well.

Figure 6. ‘Obstacle Avoider’ program in Nibble and image of the associated robot created

using the kit.

The programming conventions such as ‘Begin’ and ‘Forever’ as shown in the program above

also posed a challenge towards them to be included in the visual programming method

since they formed an integral part of the programming requirements.

The ideation concepts have been explained below:

Concept1:

The concept consisted of a number of ‘Condition & Action’ blocks spread across the page.

Different components could be inserted into these blocks to define specific conditions and

the respective actions. Data associated with the components appeared alongside. Blocks

placed at the same level horizontally across the page represented actions being executed

in parallel. Shown in figure 7 is the conceptual wireframe interface for the idea.

Figure 7. Concept 1.

This concept was rejected primarily for necessarily placing the conditions/actions of

objects onto a rigid timeline with respect to each other, which would not always be

relevant. It involved a lot of horizontal scrolling as well.

Concept 2:

It consisted of an array of ‘Condition’, ‘Action’ and ‘Otherwise’ titled blocks representing

the different conditions and the respective actions when the particular conditions were

true and when false. The concept was quite graphical in nature, in terms of defining

conditions and providing actions to components. Shown in figure 8 is a wireframe for the

particular concept.

Figure 8. Concept 2.

This concept was particularly rejected because of necessarily asking for an action under

every situation, even when a condition was false. This necessarily did not go along the

algorithmic way of programming, and required extra thought on part of the person

creating the program.

Concept 3:

This concept followed a very similar structure in terms of hierarchy and execution as with

Nibble, though the process of including conditions and actions was quite ‘visual’ in nature.

It was optional for users to provide actions in case of conditions being false. Step-based

placement of elements brought out the relationships and hierarchy. Shown in figure 9 is a

wireframe for the concept.

Figure 9. Concept 3.

The concept was rejected because of being too close to the conventional programming

platform and not adding any critical value over and above.

Concept 4:

This concept was conceived out of the key observation that there was very little direct

association between the physical form of the robotic toy with the process of programming.

The structure of the robot (sensor positions, motor orientations etc.) as well as the

program to be fed into the robot is created in accordance with the particular task at hand;

but while using conventional methods of programming, there is no reference to either

while doing the other. Trying to associate the two, this particular concept allows the user

to replicate the physical state (top view) of the assembled robot and further use it to

provide the conditions and respective actions in an intuitive fashion while programming.

Shown in figure 10 are the sample initial wireframe for the concept.

Figure 10. Concept 4.

Being able to remove the abstract nature of programming quite remarkably and bringing it

so close to the physical aspects of the robotic toy, this particular concept was taken

forward for evolution and refinement. Few positive characteristics of other concepts were

also decided to be merged into the final iteration.

7. Concept Evolution and Testing

The particular concept was evolved and further evolved into detailed wireframes so as to

define the concept more concretely. It was discussed with programming experts and a

number of sample programs were created using the particular medium as so ensure its

validity under different scenarios.

A basic working prototype of the VPL was created in the QT framework, and further tested

with children (Figure 11) so as to ensure it satisfied its primary motives. It also helped

grasp the initial acceptability of the application, directions for further refinement and

new features to be included. The prototype was tested with children of varying ages and

with varying levels of programming expertise, right from first-time programmers to

proficient ones, so as to ensure it was readily picked up by novices as well as easily

adapted to by experts. This study led to the provision of a number of new features into

the VPL and emphasized on certain elements like efficient real-estate utilization and

proper alignment and layout.

Figure 11. Initial version of Cimple being tested by children.

8. Final Concept

The final concept, Cimple, evolved with the refinements driven by user feedback has been

shown in figure 12 and 13. There are two key steps towards creating programs using it:

recreating the structure of the assembled robot and writing the program using the visual

elements, both being fairly simple and straightforward to comprehend and carry out. The

application allows the child to drag and drop elements on the interfaces and provides

manipulation abilities using intuitive interaction patterns such as clicking directly over the

graphical entities. Providing the means to define commands with the physical structure

and orientation of the assembled robot, it makes the entire process of programming very

intuitive. The design being focused towards young kids, it allows them to create programs

up to a certain degree of complexity only, the focus being on able to create simple

programs with great amount of ease. The basic features have been indicated alongside the

interfaces shown next.

Figure 12. Cimple interface I: Re-creating the Robot, and inset, the top view of the Robot.

Figure 13. Cimple interface 2: Creating the Program.

It is important to mention here that the concept has been conceived and developed under

tight deadlines and hence did not allow much work on visual design other then basic

layout, alignment and presentation considerations though it holds a lot of potential for

improvement in the particular aspects.

9. Validation

The Cimple VPL, after getting developed in the QT platform, was further handed out to

kids as part of the robotic kit Workshops conducted by Thinklabs at various cities. It led to

a lot of positive and interesting revelations, the key ones being:

a. The amount of time taken by children to learn and complete a definite number of

tasks reduced from 3 days, while using the conventional programming language Nibble,

to 1 day, with Cimple.

b. The kids were naturally more experimental with the software, trying out more

explorations on their own.

c. It led to lesser workload on part of the instructors at the workshops, as they had lesser

explanation and teaching to take care of.

Such observations and feedback communicated a successful launch of the product with the

verification of the key goals it set out to achieve at the first place. Since then the product

has gained fair amount of popularity amongst the target user base of younger kids as well

as amongst kids/students of other age groups too.

10. Conclusion

The design of Cimple reflects the importance of looking at software products, especially

one associated with a product such as a robotic kit which has a physical as well as

software interface for the users to interact with, should be designed by paying

consideration towards elements of both the mediums. Looking at the software and

hardware individually, without consideration towards the other medium would not lead to

products beyond a particular level of user-friendliness. The design also somewhere reflects

on the fact that software products need to be looked at far more creatively, beyond the

standard realm of usability-related services, to improve their utility and intuitiveness.

A clear definition of users and having them at hand to carry out the necessary kind of

testing helped in creation of a product with a limited but extremely user-friendly set of

features with a great degree of confidence.

References

Visual Programming Language. [Online] Available at

<http://en.wikipedia.org/wiki/Visual_programming_language> [Accessed 3 November 2009].

ER-6 Programmable Robot Kit. [Online] Available at <http://www.electronickits.com/robot/ER-

6.htm> [Accessed 19 November 2009].

Meccano. [Online] Available at <http://en.wikipedia.org/wiki/Meccano> [Accessed 28 November

2009].

Robot Software. [Online] Available at <http://en.wikipedia.org/wiki/Robot_software> [Accessed 7

November 2009].

VPL Introduction. [Online] Available at <msdn.microsoft.com/en-us/library/bb483088.aspx>

[Accessed 22 November 2009].

Bi-box. [Online] Available at <evobi.in/bibox.php> [Accessed 21 October 2009]

Yahoo Pipes. [Online] Available at <http://pipes.yahoo.com> [Accessed 22 November, 2009.].

Scratch. [Online] Available at <http://scratch.mit.edu> [Accessed 21 November 2009].

NXT Software. [Online] Available at <http://mindstorms.lego.com/en-us/whatisnxt/default.aspx>

[Accessed 20 November 2009].

Author Information

Nikhil Karwall is an independent design consultant working in the streams of Product

Design and Interaction Design since 2007. He holds a Master’s in Design from the Industrial

Design Centre at IIT Bombay and a Bachelor’s in Mechanical Engineering from NIT

Jalandhar. He has two publications and a patent to his credit. He received the

Businessworld-NID Design Excellence Award for his design work as a student in 2008 and

the Best Paper Award for a paper presented at the Conference on Advances in Usability

Engineering in 2008.

